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Purpose: MR image quality and subsequent brain morphometric analysis are inevitably affected by noise.
The purpose of this study was to evaluate the effectiveness of an artificial intelligence (AI)-based post-scan
processing denoising system, intelligent Quick Magnetic Resonance (iQMR), on MR image quality and brain
morphometric analysis.
Methods:We used 1.5T MP-RAGE MR images acquired from the Alzheimer’s Disease Neuroimaging Initiative
1 database. The images of 21 subjects were used for cross-sectional analysis and 15 for longitudinal analysis.
In the longitudinal analysis, two timepoints over a 2-year interval were used. Each subject was scanned twice
at each timepoint. MR images processed with and without the denoising system were compared both visu-
ally and objectively using FreeSurfer cortical thickness analysis.
Results: The denoising system reduced the noise with good white−gray matter contrast (noise: p < 0.001;
contrast: p = 0.49). The mean intraclass correlation coefficients (ICCs) of cortical thickness were slightly better
in the images processed with the denoising system (0.739/0.859/0.883; Gaussian smoothing kernel of full
width at half maximum = 0/10/20) compared with the unprocessed images (0.718/0.854/0.880). In the longi-
tudinal analysis, the mean ICCs of symmetrized percent change improved in images processed with the
denoising system (0.202/0.349/0.431) compared with the unprocessed images (0.167/0.325/0.404). In addi-
tion, the detectability of significant cortical thickness atrophy improved with denoising.
Conclusion: We confirm that the AI-based denoising system could effectively reduce the noise while retain-
ing the contrast. We also confirm the improvement of the reliability and detectability of brain morphometric
analysis with the denoising system.

© 2021 Elsevier Masson SAS. All rights reserved.
Keywords:

Cortical thickness
Denoising
FreeSurfer
Magnetic resonance imaging
Morphometry
Surface-based morphometry
R, intelligent Quick Magnetic

from the Alzheimer’s Disease
du). As such, the investigators
entation of ADNI and/or pro-
of this report. A complete list-
adni.loni.usc.edu/wp-content/
f
University of Tokyo, Tokyo, 7-

aru).

ed.

kao, S. Amemiya et al., The effect of a post-scan processing denoising system on image quality and
iology (2021), https://doi.org/10.1016/j.neurad.2021.11.007
Introduction

Brain morphometric analysis has become increasingly crucial for
the diagnosis and evaluation of various neurodegenerative and psy-
chiatric disorders.1−3 In Alzheimer’s disease, for example, the longitu-
dinal atrophy rate has been used as a biomarker for monitoring
disease progression, predicting prognosis, and evaluating the efficacy
of disease-modifying therapeutics.2, 4−6 High-contrast three-dimen-
sional MR images are an excellent way to differentiate gray and white
matter and detect disease-related changes. Recent advances in
mathematical and computational technology have also made brain
morphometric analysis easier, more reliable, and more robust.

However, brain MR images are often affected by various quality
deteriorations. Poor image quality affects the accuracy of morpho-
metric analysis, deteriorating its reliability and resulting in its poor
credibility as a biomarker. To use morphometric analysis as a reliable
and robust biomarker, high-quality MR images are essential. In order
to improve image quality, several imaging correction techniques
have been proposed, such as N3/N4 bias field correction7 to reduce
residual inhomogeneity and Gradwarp for correction of geometric
distortion due to gradient non-linearity.8

One important imaging correction technique is denoising. Particu-
larly, post-scan processing denoising techniques have the advantage
of not increasing the acquisition time and, therefore, several post-
scan processing denoising techniques have been introduced, such as
non−local means,9 singular value decomposition,10 sparse represen-
tation,11 machine learning-based techniques, and combinations of
these.12

Intelligent Quick Magnetic Resonance (iQMR; Medic Vision Imag-
ing Solutions, Tirat Carmel, Israel13) is a post-scan processing
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Table 1
The scoring criteria used for visual evaluation.

Grading Noise White-gray matter contrast

Excellent No noticeable noise Clearly separated
Good Slight noise Mostly separated
Poor Adverse effect for interpretation Partially separated
Bad Unacceptable Unacceptable

ARTICLE IN PRESS
JID: NEURAD [m5G;December 11, 2021;16:15]

N. Kanemaru, H. Takao, S. Amemiya et al. Journal of Neuroradiology 00 (2021) 1−8
denoising system based on artificial intelligence (AI)-assisted itera-
tive image reconstruction technology, using parallel processing by
multiple Graphic Processing Units. The algorithms are based on
Medic Vision’s SafeCT algorithms, adapted to handle MRI imagery.
The SafeCT algorithms, which provide noise reduction and image
enhancement for CT images, has been evaluated and reported in sev-
eral publications.14,15 For iQMR, Tanenbaum et al. have reported that,
in visual evaluation, denoised images acquired by about 30% shorter
protocols were comparable to images acquired by standard proto-
cols,16 but without quantitative evaluation.

A post-scan processing denoising system like iQMR has the possi-
bility to improve not only MR image quality but also the quality of
morphometric analysis. However, its effectiveness in clinical and
research practice has been not thoroughly evaluated, and to the best
of our knowledge, there have been no reports evaluating the effec-
tiveness of the post-scan processing denoising system on morpho-
metric analysis.

The purpose of this study was to qualitatively and quantitatively
evaluate the effect of the AI-based post-scan processing denoising
system (iQMR) on image quality and brain morphometric analysis.
The fully automated surface-based morphometric analysis software
FreeSurfer was used to objectively evaluate the effect of this system
on white−gray matter contrast and morphometric analysis. We also
evaluated the performance of the median filter, as a representative of
classical denoising algorithms, to see the general impact of denoising
on MR images.

Materials and methods

AI-based post-scan processing denoising system (iQMR)13

iQMR employs statistical priors of noise distribution in volumetric
MR images along with state-of-the-art methods for SNR improve-
ment image enhancement and iterative reconstruction, to restore the
image detail and quality of MRI scans that were acquired with rela-
tively poor exposure parameters (e.g., fast or low-resolution scans).

The input data set (MR images) is decomposed into 3D patches.
These patches are transformed into feature space by calculating mul-
tiple features for each image patch. They are then grouped based on a
unique similarity measure. Combining the knowledge of similarity
between patches, and the noise statistics estimate, the noise and sig-
nal are jointly estimated and separated. This process is iterated until
certain convergence criteria are achieved.

The performances of the core iterative reconstruction algorithms
can be controlled by parameters that affect the resulting images, for
example creating softer/sharper images, enhancing edges, etc. A
machine-learning module that compares the input images to certain
reference images finds the optimal set of processing parameters for a
certain input image, so the output result would be as close as possible
to said reference. These parameters are then fed to the iterative
reconstruction algorithm in order to provide the best output image.
The reference images are high-quality images acquired with the
same scanner during implementation of iQMR. Additionally, certain
filters may be applied for enhancing certain features (e.g., edges) and
restoring image "look and feel" to meet specific preferences of the
users (radiologists). Finally, the dataset is reconstructed to the
required slice thickness.

Subjects

Data were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), other biological markers, and
2

clinical and neuropsychological assessment can be combined to mea-
sure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

The cross-sectional analysis included 21 subjects (5 females and
16 males, mean age = 75.7 § 6.9 years, age range = 56−86 years) for
whom 1.5T and 3.0T MR images on Philips scanners (Philips Medical
Systems, Best, The Netherlands) were available (four with Alz-
heimer’s disease, nine with mild cognitive impairment, and eight
normal at baseline). The longitudinal analysis included 15 subjects (4
females and 11 males, mean age = 74.6 § 7.4 years, age range = 58
−86 years) for whom 1.5T and 3.0T MR images on Philips scanners at
baseline and 24-month were available (three with Alzheimer’s dis-
ease, four with mild cognitive impairment, and eight normal at base-
line). At each timepoint for each subject, two images of 1.5T MP-
RAGE were acquired. Images of 3T were not used in this study.

Image acquisition

Three-dimensional sagittal T1-weighted volumes were down-
loaded from the public ADNI 1 database. A MP-RAGE sequences was
used to acquire the T1-weighted images over 7 min 12 s with the fol-
lowing parameters: TR: 2300 ms, TE: 4 ms, TI: 1000 ms, flip angle: 8°,
FOV: 24 cm, slice thickness: 1.2 mm, acquisition matrix:
192 £ 192 £ 170, acquisition voxel size: 1.28 £ 1.28 £ 1.20 mm,
reconstructed matrix: 256 £ 256 £ 170, and reconstructed voxel
size: 0.94 £ 0.94 £ 1.20 mm.

Post-scan processing

We processed each image with different denoising techniques,
iQMR and median filter. For iQMR denoising, the following parame-
ters were used: filter = default, and emphasis on the edge = low.
Then, bias field correction was applied to all the images (original,
iQMR-, and median filter-processed images) using the N3 algorithm
to reduce residual intensity inhomogeneity.7, 17, 18

Visual evaluation of cross-sectional analysis

Two radiologists, who were blind to the type of the denoising
technique, separately assessed the image quality of the images with-
out denoising (“Original”), as well as images processed with iQMR
(“AI-based denoising”) or median filter (“Median filter”). Noise and
white−gray matter contrast were scored as excellent, good, poor, or
bad. The scoring criteria is shown in Table 1. Then, inter-reader dis-
agreements were resolved by consensus. Only one scan from each
subject was included in the visual evaluation.

Cross-sectional automated morphometry analysis with FreeSurfer

Cortical thickness was measured using the FreeSurfer 6.0.1 system
(#), which is a publicly available system package for studying cortical
and subcortical anatomy using the surface-based approach. Each
image was processed with a cross-sectional processing stream in
FreeSurfer. Surface detection and segmentation were visually
checked for accuracy. Manual edits of surface models were not per-
formed, as the quality of surface models was almost satisfactory. Cor-
tical thickness was smoothed with 0, 10, and 20-mm full width at
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Table 2
Visual evaluation in the cross-sectional analysis.

n = 21 Noise White−gray matter contrast

Excellent Good Poor Bad Excellent Good Poor Bad

Original 0 17 4 0 11 8 2 0
AI-based denoising 15 5 1 0 15 6 0 0
Median filter 18 2 1 0 1 15 5 0
p value* p < 0.001 p < 0.001

* Friedman test.
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half maximum (FWHM) surface-based Gaussian kernel to reduce
local variations in the measurements for further analysis.

Longitudinal automated morphometry analysis with FreeSurfer

Using the results from the cross-sectional analysis, a within-sub-
ject template from all timepoints was created to build the average
subject anatomy for the longitudinal analysis. Then, each timepoint
was analyzed using information from the template and individual
cross-sectional data runs to initialize several segmentation algo-
rithms. Thus, within-subject variability and variations in the process-
ing procedures could be effectively reduced without altering the
between-subject variability.19

Statistical analysis

Visual evaluation of cross-sectional analysis

Using the Friedman test, a significant difference was found for
noise and contrast among Original, AI-based denoising, and Median
filter images. If a significant difference was found, post-hoc pairwise
comparisons were performed with Bonferroni correction for multiple
comparisons. Significance level was set at p < 0.05.

Cross-sectional automated morphometry analysis with FreeSurfer

Vertex-wise intraclass correlation coefficients (ICCs) of cortical
thickness were calculated for Original, AI-based denoising, and
Median filter images. The ICC is a measure of within-subject relative
to between-subject variability.20, 21 A two-way mixed model, abso-
lute-agreement, single-measurements reliability study was used.

Longitudinal automated morphometry analysis with FreeSurfer

The reliability of cortical thinning was measured with the vertex-
wise ICC of symmetrized percent change. Symmetrized percent
Fig. 1. MR images (A) without denoising, (B) processed with intellig

3

change was calculated as follows: symmetrized percent
change = 100 £ (thickness of timepoint2 − thickness of timepoint1) /
[(timepoint2 − timepoint1) £ 0.5 £ (thickness of timepoint1+ thick-
ness of timepoint2)]. A two-way mixed model, absolute-agreement,
single-measurements reliability study was used for ICC calculation.

Significant cortical atrophy in symmetrized percent change was
assessed using a one-sample t-test. Among the two longitudinal pairs
for each subject, the best image quality pair was included in the sta-
tistical analysis. Multiple comparison correction was done with ver-
tex-wise false discovery rate using a threshold of p < 0.05.

Results

Visual evaluation of cross-sectional analysis

Fig. 1 shows the unprocessed and processed images (Original, AI-
based denoising, and Median filter). AI-based denoising reduced the
noise while maintaining the white−gray matter contrast. Median fil-
ter reduced noise but obscured the details of anatomical structures
and blurred the boundaries. Statistically, a significant difference
among Original, AI-based denoising, and Median filter was found for
noise and white-gray matter contrast (p < 0.001 for both, Table 2).
The noise was reduced for AI-based denoising compared with Origi-
nal (p < 0.001). The contrast of white−gray matter tended to improve
with AI-based denoising compared with Original, but there was no
significant difference (p = 0.49). Median filter showed the lesser noise
than Original (p < 0.001), while there was no significant difference
between Median filter and AI-based denoising (p = 1.00). The white-
gray matter contrast was much more obscure in Median filter com-
pared with Original and AI-based denoising (p < 0.001 for both).

Cross-sectional analysis of automated cortical thickness

Fig. 2 shows the vertex-wise ICC of cortical thickness in Original,
AI-based denoising, and Median filter with different smoothing ker-
nels (0, 10, and 20 mm) mapped to the surface. Fig. 3 shows the plot
ent Quick Magnetic Resonance, and (C) with the median filter.



Fig. 2. The intraclass correlation coefficients of the cortical thickness in images without denoising (Original) and processed with intelligent Quick Magnetic Resonance (AI-based
denoising) and with the median filter (Median filter) with different smoothing kernels (0, 10, and 20 mm). Due to similarity between hemispheres, only the left hemisphere is
shown. Threshold = 0.75−1.0.

Fig. 3. Plot of the distribution of the intraclass correlation coefficients (ICCs) of the cortical thickness with different smoothing kernels (bin width = 0.005). The ICCs of images proc-
essed with the AI-based denoising system (AI-based denoising) tended to be slightly better than images without denoising (Original) and with the median filter (Median filter).
FWHM = full width at half maximum.
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Table 3
Mean intraclass correlation coefficients (ICCs) of cortical thickness
with different FWHMs.

FWHM (mm) Mean ICC of cortical thickness

Original AI-based denoising Median filter

0 0.718 0.739 0.741
10 0.854 0.859 0.843
20 0.880 0.883 0.863

FWHM = full width at half maximum.
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of the distribution of the ICCs of cortical thickness. Table 3 shows the
average ICCs of Original (ICC = 0.718/0.854/0.880), AI-based denoising
(ICC = 0.739/0.859/0.883), and Median filter (ICC = 0.741/0.843/0.863)
for each FWHM (0/10/20).
Longitudinal analysis of automated cortical thickness
ICC of symmetrized percent change
Fig. 4 shows the vertex-wise ICCs of symmetrized percent change

mapped to the surface. The distribution of the ICCs of symmetrized
percent change is plotted in Fig. 5. The average ICCs of symmetrized
percent change were 0.167/0.325/0.404 in Original and 0.202/0.349/
0.431 in AI-based denoising, and 0.200/0.345/0.428 in Median filter
for each FWHM (0/10/20) (Table 4).
Significant cortical thinning over 2 years
Fig. 6 shows the significant cortical thinning over 2 years in Origi-

nal, AI-based denoising, and Median filter. For an FWHM of 20, Origi-
nal, AI-based denoising, and Median filter showed significant
thinning, mainly in the entorhinal and parahippocampal areas. No
significant change was detected for an FWHM of 0 or 10. With an
FWHM of 20, significant atrophy was observed more widely for AI-
based denoising, in the precuneus, frontal, and parietal areas.
Discussion

After processing with the AI-based denoising system, the visual
noise was reduced with good white−gray matter contrast. In the
cross-sectional and longitudinal morphometric analysis, the ICC of
cortical thickness and symmetrized percent change was better in the
MR images processed with the AI-based denoising system compared
with the images without denoising. In addition, the detectability of
significant atrophy was improved by processing with the AI-based
denoising system.
Fig. 4. Vertex-wise intraclass correlation coefficients (ICCs) of symmetrized percent change m
is shown. The ICCs of symmetrized percent change tended to be higher for images processed
out denoising (Original) and with the median filter (Median filter). Threshold = 0.3−0.8.

5

Noise and contrast

Denoising methods often remove not only noise but also struc-
tural details, such as anatomical boundaries.22 Thus, we evaluated
both noise and white−gray matter contrast to determine if contrast
was deteriorated with denoising. The performance of the median fil-
ter, one of the major classical denoising techniques, was also evalu-
ated to see the general impact of the denoising on MR images. In
addition to visual inspection, we investigated cortical thickness of
the images using FreeSurfer. We chose to analyze cortical thickness
with FreeSurfer for several reasons. First, we needed a fully auto-
mated analysis method to evaluate objectively. Second, among the
other measurements and systems, we felt that the surface-based cor-
tical thickness analysis was more sensitive to deterioration in white
−gray matter contrast, since a good contrast is essential for the differ-
entiation and segmentation of the white and gray matter and the sur-
face-based approach provides better alignment of cortical landmarks
than volume-based registration.23 Third, since the results could be
evaluated per vertex, the variability of the measurement would be
increased compared to the volumetric analysis, allowing for easier
and more detailed detection of the differences between images with
and without denoising. In the visual inspection, the AI-based denois-
ing system reduced the noise with good contrast, while median filter
reduced the noise at the cost of the sharpness of the edges and
detailed textures. In the cross-sectional and longitudinal analyses
using FreeSurfer, the ICCs of cortical thickness were higher in the
images with AI-based denoising compared to images without denois-
ing, suggesting that AI-based denoising has a better denoising quality
while maintaining contrast.
Comparison of detectability among Original, AI-based denoising, and
Median filter

AI-based denoising also showed good detectability in longitudinal
changes, reflecting the improvement in ICCs of symmetrized percent
change compared to Original and Median filter. For an FWHM of 20,
the surface significance map of symmetrized percent change showed
stronger and more widespread atrophy in AI-based denoising com-
pared with Original and Median filter, mainly in the entorhinal and
parahippocampal areas and extending into the isthmus cingulate and
precuneus areas. Those atrophy areas are nearly consistent with a
previous report showing prominent atrophy in the mesial and lateral
temporal, isthmus cingulate, and orbitofrontal areas in Alzheimer’s
subjects.24 For an FWHM of 0 and 10, no significant atrophy area was
detected over 2 years. This may be partially because the sample size
was not large enough to detect atrophy.
apped to the surface. Due to similarity between hemispheres, only the left hemisphere
with the AI-based denoising system (AI-based denoising) compared with images with-



Fig. 5. Plot of the intraclass correlation coefficients (ICCs) of the symmetrized percent change (bin width = 0.005). The ICCs of symmetrized percent change tended to be higher for
images processed with the AI-based denoising system (AI-based denoising) compared with images without denoising (Original) and with the median filter (Median filter).
FWHM = full width at half maximum.

Table 4
The mean intraclass correlation coefficients (ICCs) of symmetrized
percent change with different FWHMs.

FWHM (mm) Mean ICC of symmetrized percent change

Original AI-based denoising Median filter

0 0.167 0.202 0.200
10 0.325 0.349 0.345
20 0.404 0.431 0.428

FWHM = full width at half maximum.
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The impact of different FWHMs on the morphometric analysis

Previous reports have shown that in cross-sectional cortical
thickness analyses, moderate smoothing reduces noise and
within-subject variability, resulting in improvement in reliability
and detectability, while smoothing also deteriorates spatial
6

resolution, and small local change could be under-estimated
when the FWHM was too large.25−27 A similar trend was
observed in our cross-sectional and longitudinal cortical thickness
analyses, which showed higher reliability with larger smoothing
(FWHM = 0, 10, 20). Additionally, the surface significance map of
symmetrized percent change was more widespread for an FWHM
of 20 compared to an FWHM of 0 or 10.
Impact of different denoising techniques on morphometric analysis

In cross-sectional analysis, Median filter showed the highest ICC
in FWHM = 0 and the lowest ICC in FWHM = 10 and 20. Smoothing
improved ICC to a lesser extent in Median filter than in Original and
AI-based denoising. This may be because Median filter have less
juxta-vertex variability at the cost of the details of anatomical struc-
tures, and thus there was less impact of smoothing compared with
Original and AI-based denoising.



Fig. 6. Significant changes over 2 years for a full width at half maximum (FWHM) of 20. Images without denoising (Original), processed with the AI-based denoising system (AI-
based denoising) and processed with the median filter (Median filter) showed a significant decline, mainly in the entorhinal and parahippocampal areas. Significant atrophy was
more widely observed for AI-based denoising, in the precuneus, frontal, and parietal areas. FWHM = 0 and 10 are not shown due to no significant changes. Due to similarity between
hemispheres, only the left hemisphere is shown. The color scale for statistical difference represents p values after false discovery rate correction. Dark and light blue areas represent
significant cortical thickness atrophy.
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In longitudinal analysis, Median filter showed lower ICC than AI-
based denoising and higher ICC than Original. Image processing was
initialized with a within-subject template in the longitudinal analysis
and a default template in the cross-sectional analysis.19 Because
within-subject templates are created from images at each timepoint,
the quality of within-subject templates is also inevitably affected by
the quality of each image. Compared with the default template, the
use of the within-subject template might be more susceptible to dif-
ferences in image quality.
Limitations

This study had several limitations. First, the morphometric analy-
sis was done only with FreeSurfer since we felt that surface-based
cortical thickness analyses are more sensitive to changes in the white
−gray matter contrast. Second, the denoising system was used only
for 1.5T MP-RAGE images, and its effectiveness for other sequences
or 3.0T images was not assessed in this study. The reason we chose
not 3.0T MR images but 1.5T MR images is based on the hypothesis
that denoising effects would be more obvious in 1.5T images, which
image quality might be lower than 3.0T images. Third, we did not
have the ground truth (i.e., postmortem measurements), nor did we
know the true atrophy rate. However, the fact that the atrophy areas
observed in AI-based denoising were compatible with previous data
for Alzheimer’s disease and mild cognitive impairment implies a cer-
tain degree of reliability.24 Fourth, the number of the subjects were
7

relatively small (21 subjects for cross-sectional analysis and 15 for
longitudinal analysis) since the test-retest data with both 1.5T and
3.0T images on Philips scanners were included in this study. Finally,
this study included only the median filter for comparison since we
used the median filter to investigate the general impact of denoising
on visual image quality and morphometric analysis, rather than to
compare the performance between AI-based denoising and other
denoising methods.

Conclusions

In conclusion, we confirmed that the AI-based denoising system
provides promise for denoising images while retaining contrast,
which was verified both visually and objectively using a fully auto-
mated morphometric analysis. We also confirmed the improvement
in the reliability and detectability of longitudinal analyses in three-
dimensional MP-RAGE images.
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